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A method for computing low-temperature series for renormalized operators in 
the two-dimensional Ising model is proposed. These series are applied to the 
study of the properties of the truncated renormalized Hamiltonians when we 
start at very low temperature and zero field. The truncated Hamiltonians for 
majority rule, Kadanoff transformation, and decimation for 2 x 2 blocks depend 
on the how we approach the first-order phase-transition line. The renormaliza- 
tion group transformations are multivalued and discontinuous at this first-order 
transition line when restricted to some finite-dimensional interaction space. 
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1. I N T R O D U C T I O N  

The behavior of the renormalization group (RG) in the vicinity of first- 
order phase transitions has been a very controversial matter for the last 20 
years. In 1975 Nienhuis and Nauenberg t~) proposed that the RG transfor- 
mations (RGTs) behave near first-order transition points in a similar 
fashion as near standard critical points. Each RG step is smooth (i.e., the 
renormalized cot~plings are analytic functions of the original ones, even at 
the transition points). Singular behavior is recovered as we infinitely iterate 
this transformation near the attracting manifold of a fixed point. Moreover, 
the fixed point governing a first-order phase transition has the following 
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properties2: (i) A domain of  attraction which includes the first-order trans- 
ition surface. (ii) Zero correlation length at the fixed point (in most  
systems, first-order transition points possess a finite correlation length; see 
ref. 2 for a counterexample). (iii) A relevant operator  whose critical expo- 
nent is given by the dimensionality of  the system, y = d. As a matter of  fact, 
there are as many exponents y = d  as phases coexist at the transition 
line.(3~, 3 In the Ising model it is believed that this fixed point is located at 
zero temperature, t4) 

This picture was criticized by some authors, (5-9) who claimed that the 
RG flow is itself discontinuous at the transition line. That  is, they claimed 
that the renormalized Hamiltonian has different limiting values depending 
on how the original Hamiltonian approaches the transition line. Most  of  
these claims were based on Monte  Carlo renorrnalization group ( M C R G )  
computations, t5-8) In ref. 9 nonrigorous analytical arguments were given to 
support the same conclusion. 

In opposition to this view, it was argued in ref. 10 that the observed 
discontinuities are due to the truncation of  the Hamiltonian space inherent 
in the M C R G  approach. That  is, the exact RG map is continuous at the 
first-order phase transition (in agreement with the conventional scenario), 
but truncation could induce the observed discontinuities. In fact, for the 
two-dimensional (2D) Ising model and majority rule with 2 x 2 blocks it 
was found that the discontinuity in the magnetic field was of  the same 
order as the truncation error. Moreover,  as the number  of  operators 
included in the computat ion was increased, the size of  this discontinuity 
decreased. 

This puzzle was partially solved by van Enter etal . ,  tl~) who showed 
that for systems with bounded dynamical variables and interacting through 
a Hamiltonian belonging to the space ~ (i.e., the space of  real, absolutely 
summable, and translation-invariant interactions) the RG map is always 
continuous and single valued, whenever it exists  at all (subject to some very 
mild locality conditions on the RGT).  For  finite systems the existence of  
the transformation (i.e., of  the renormalized Hamil tonian)  is trivial. In the 
thermodynamic limit, however, this is a very subtle problem. As a matter 
of  fact, van Enter et al. proved that the renormalized Hamiltonian does not 

exist in the 2D Ising model when the temperature is low enough, for the 
Kadanoff  transformation, decimation, block average, and some particular 
cases of majority rule. The possibility of  a non-Gibbsian renormalized 

2 Nienhuis and Nauenberg called this a discontinuity fixed point (DFP). However, we shall 
avoid this name, as it causes confusion with a different scenario (discontinuous RG flow) 
described in the next paragraph. 

3 Here we take into account the (trivial) critical exponent y =d associated with the renor- 
malization of the identity operator in the Hamiltonian. 
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measure had been explained earlier by Griffiths and Pearce (12) using more 
physical (but nonrigorous)  arguments. On the other hand, what  happens 
for the majority rule with 2 x 2 blocks (the case most considered in the 
literature) is still unclear. 

It therefore remains to be understood (a) why M C R G  methods show 
a discontinuous RG flow at or near first-order phase transition points and 
(b) whether such apparent  discontinuities are in any way connected with 
the Gibbsian or  non-Gibbsian nature of  the renormalized measure. The 
logic of  the M C R G  approach is the following: (1) Compute  expectation 
values of  suitable renormalized local operators using a Monte Carlo (MC) 
algorithm and a certain real-space RGT. (2) Assume that the renormalized 
measure is a Gibbs measure for some (a priori unknown)  interaction 4 3r 
belonging to a (prechosen) n-dimensional subspace V, c ~  ~. (3) Compute  
the renormalized coupling constants (i.e., compute  ~' , , )  using some statisti- 
cal inversion method. In general, one has to minimize some strictly convex 
functional F,,, 5 which leads to a highly nonlinear set of equations involving 
the expectation values computed in step 1. M C R G  methods thus study a 
truncated RG map in which the renormalized Hamiltonian ~/g", is forced to 
lie in the subspace In.  At this point we can ask two different questions: (A) 
For  each fixed n < ~ ,  what  are the properties of  3/g',,: existence, uniqueness, 
continuity,...? (B) What  is the behavior of  Y:', as n tends to infinity? 
Presumably, the answers to (A) and (B) are model dependent: they depend 
generically on the physical system, on the RGT, and on the choice of  the 
subspaces V,. On the other hand, the connection between Gibbsianness 
and the behavior of  the 3r as n ~ oo is far from clear. In ref. 11 it was 
proven that / f  the renormalized measure is Gibbsian, then there is a 
sequence of  truncated interactions {~' , ,},  which are almost minimizers of  
F,  and which converge to the true renormalized Hamiltonian M" in ~ 
norm. However,  it is not  guaranteed that the exact minimizers ~g',, also 
converge to W' .  On the other hand, / f  the renormalized measure is non- 
Gibbsian, then it was proven in ref. 11 that the sequence { 3/g',,} has no limit 
at all in the space ~1. 

The simplest system which undergoes a first-order phase transition is 
the 2D Ising model at T < To. In particular, for T ~ 7",. we can do a com- 
plete analytical study using low-temperature ( low-T) expansions. ~3~'6 

4 We shall hereafter denote renormalized quantities with a prime. 
5 In ref. 11, Section 5.1.2, the interaction ~vf',, comes from minimizing the relative entropy 

density with respect to the renormalized measure. See also Section 3 below. 
6 It ought to be also possible to study the first-order transition undergone by the q-state Potts 

model in the fimit q >> 1 using l/q expansions. 
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Analytical methods would be preferred in this kind of  investigation, as all 
sources of errors are under control. 7"8 

In this paper we address question (A) for the 2D Ising model at low 
temperature, using series expansions. We develop a simple procedure to 
compute  these series for the expectation values of  the renormalized 
operators which enter in the equations needed to obtain ~/f',. Fo r  real- 
space RGTs the expectation value of  an operator  O with respect the 
renormalized measure can be written as an expectation value in the 
original measure of  a certain composite operator  0.  This 0 is equal to 
the original operator  O acted upon by a probability kernel (which is the 
mathematical object representing the RGT).  Thus, if we know how to 
obtain the low-T expansions in the original (unrenormalized) measure, 
then we can compute  any expectation value by doing the corresponding 
integral. 

These series can be useful in two other ways. They provide a check for 
M C R G  computat ions at low temperature, since expectation values coming 
from the MC simulations can be compared with the low-T predictions. On  
the other hand, when performing a R G T  the system is viewed at a larger 
spatial scale. For  that reason we believe that the low-T series for the renor- 
realized magnetization, susceptibility, and specific heat could be used to 
extract the critical exponents (using standard series-extrapolation techni- 
ques). In fact, a better convergence could be expected for these "improved" 
series. It would be interesting to devise a computat ional  procedure to 
generate these series to an arbitrary order. 

The goal of this paper is thus to study the properties of the finite- 
dimensional approximants ~/f" for the 2D Ising model. Starting on the 
first-order transition line (i.e., at zero magnetic field) and at very low tem- 
perature, for each of  the two pure phases v <• we obtain (via some RGT)  
two different renormalized measures v '~ • >. For  each of  them we can find a 
unique truncated renormalized Hamiltonian ~v~'~< +-~. The natural question 
is: are these two truncated Hamiltonians equal or  not? Or equivalently: do 
all the odd couplings in ~c+_> vanish, or not? An affirmative answer 

7 Series expansions do not suffer from two types of errors inherent to any MC simulation: 
statistical errors and finite-size corrections. These errors affect the estimators of the expecta- 
tion values obtained in the MC simulation and they are propagated to the interaction Jr',. 
By contrast, the predictions for such expectation values given by series expansions are 
obtained directly in the thermodynamic limit and no stochastic process is involved. 

8 Note that unlike many applications of series expansions, here we are really interested in the 
low-T behavior and not in the critical region T~ To. Therefore, no extrapolation procedure 
is involved. 
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implies that the truncated RGT restricted to V,, is continuous and single 
valued at the transition line. 9 

We have studied three different RGTs: decimation, Kadanoff transfor- 
mation with large parameter p, and majority rule, all of them defined on 
2 x 2 blocks. 1~ We find that the truncated Hamiltonian ~v~a,,, is continuous 
at the transition line for the majority-rule transformation when restricted to 
a subspace containing a magnetic field and a nearest neighbor interaction. 
On the other hand, we find that this is not the case for the decimation and 
large-p Kadanoff  transformations restricted to the latter 2D subspace nor 
for the majority-rule transformation when restricted to the three-dimen- 
sional subspace containing magnetic field, nearest neighbor, and next to 
nearest neighbor interactions. In all these latter cases, the renormalized 
magnetic field is nonzero, implying that the truncated RG map is discon- 
tinuous at the first-order transition line. Thus, the typical situation seems to 
be that truncation induces discontinuities in the RG map when restricted 
to some finite-dimensional subspace of ~1. 

This paper is organized as follows. In Section 2 we explain how the 
low-T expansions for renormalized observables can be obtained. We give 
three examples for the 2D Ising model: decimation, Kadanoff transforma- 
tion, and majority rule, all of them with block size b = 2. In Section 3 we 
study these RGTs near the Ising first-order phase transition. Finally in 
Section 4 we present our conclusions. 

2. SERIES EXPANSIONS FOR RENORMALiZED OPERATORS 

2.1. Review of Low-T Expansions 

Let us consider for simplicity a ferromagnetic Ising model on a 2D 
square lattice. The spins take the values _ 1 and interact through the 
Hamiltonian 

= --K ~ (a,aj--  1 ) - - H ~  (o',-- 1) 
<i,j)  i 

(2.1) 

9 In this case, the truncated Hamiltonian .,~',, = . ,~l  _+ ~ satisfies a fundamental property of the 
exact renormalized interaction .,~' (if .,~a, exists at all), namely single valuedness and con- 
tinuity. 

*~ is known t**~ that the first two transformations lead to non-Gibbsian renormalized 
measures at very low temperatures. This question is not  clear for the last transformation, 
although it has been conjectured that it is also non-Gibbsian.  Unfortunately, we are not  
aware of  any real-space local transformation leading to a Gibbsian measure for the Ising 
model at low temperatures. In any case, we limit ourselves to studying question (A), for 
which the Gibbsianness or non-Gibbsianness is unlikely to play a significant role. 

822/80/5-6-25 
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where the first sum is over all the nearest neighbor pairs of spins and the 
second one over every point i =  (ix, i e) of the lattice. The partition function 
for a system of N spins with periodic boundary conditions is then 

ZN=  ~ e x p [ g < ~  ( t r : i - a , + n ~ ( t r i - 1 ) ]  (2.2) 
{a= • , > i 

We have absorbed the term fl = I/kT in the definition of the coupling con- 
stants K~> 0 and H. We are mainly interested in the zero-field case (H= 0), 

but for future convenience we keep the second term of the Hamiltonian 

(2.1). This term will be necessary to obtain the zero-field magnetization 
(see below). 

The first step to compute low-T expansions is to find out the ground 
states of the system at T =  0. In our case it is easy to realize that when 
H = 0 there are only two translation-invariant ground states, Both of them 
are completely ordered configurations with magnetization + I and - 1 ,  
respectively. When H:~0,  then, there is only one ground state whose 
magnetization is parallel to the magnetic field H. We will choose hereafter 
the ( +  1)-state as our ground state. This implies that the magnetic field 
should be always nonnegative (H~>0). Furthermore, we have normalized 
the Hamiltonian (2.1) in such a way that ~ (  + I ) =  0. 

Looking at Eq. (2.2), it is easy to realize that each flipped spin is 
penalized by a factor 2 = e x p ( - - 2 H )  in the partition function, and each 
unsatisfied bond (i.e., a bond with bond spins in opposite states) is 
suppressed by a factor # = e x p ( - 2 K ) .  All the spin configurations with 
n flipped spins and m unsatisfied bonds give the same contribution to 
the partition function (2.2) and equal to ~"2". So we can group these 
configurations together and express the partition function as 

zN(~ ,  ~ ) =  Z ~N) ,, ,, z ...... ~ ,t (2.3) 
n ; ,  n 

(N) where Z ...... is the number of configuration with m unsatisfied bonds and n 
flipped spins that occur in the system. These numbers depend explicitly on 
the size of the system as well as on the boundary conditions. The first term 
of the expansion corresponds to the ground state, the second to one flipped 
spin (n = 1, m = 4), the third to two nearest neighbor flipped spins (n = 2, 
m = 6), and so on. With this choice of boundary conditions, Z {N) = 0  for ~ , n  

odd values of m. This expansion is exact for finite N if all the 2 N possible 
configurations are taken into account. 

The low-T expansion of the partition function (2.3) contains the most 
relevant terms when the temperature goes to zero. It can also be viewed as 
an enumeration of the low-energy excitations of the system. Here we are 
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interested in developing an expansion valid as K - o  oo with H bounded 
[i.e., an expansion in powers of  kt ( '~ 1 ) whose coefficients are functions of  
2]. 11 Thus, the dominant  terms are those with the smallest values of m. For  
a given value of  m the possible values of  n are finite. For  excitations which 
do not see the boundary  of  the system the allowed values of n are given by 
n~ [m/4, m2/16] u [N--m2~16, N - -m /4 ]  (resp. [ (m + 2)/4, ( m 2 - 4 ) / 1 6 ]  u 
I N -  (m 2 - 4 ) / 1 6 ,  N - -  (m + 2) /4])  when m/2 is even (resp. odd). All the 
terms with the same m, irrespective of  n, are considered to contribute at the 
same order (i.e., 2 is considered to be of  order 1). This feature implies that 
we can compute  derivatives of the series expansions with respect to the 
magnetic field H. When the temperature is very close to zero only a few 
terms are needed to provide an accurate description of  the system. 

Actually, the partition-function expansion is a technical tool to com- 
pute the expectation values of some local operators: the energy density 
E =  (ao, o)a(],o)) and the magnetization M =  (a(o, ol). The relations for a 
finite system are the following: 

1 1 0 Z N  1 I.t OZN_ E .... p 2 (2.4a) 
EN(la, 2 )= I +-2N ZN OK 1 _ _  ~ ~N) . . . .  N Z N 0/2 .... 

1 1 0 Z  N 1 1 22 OZN ~ ( N )  . . . .  
- - =  M .... /~ 2 (2.4b) MN(I't' J')= I + N ZN OH N Z N 02 

m ,  n 

As before, the coefficients ~E (N) M(N)~ do depend on the lattice size or, [ m , n '  r e , i l l  

in general, on the boundary  conditions. 
Let us discuss now the thermodynamic limit ( N - o  oo) of  these expan- 

sions. In this limit, the contribution of  all the terms with the same m is not 
in general of  the same order. In particular, for H > 0 the configurations 
with n near N (for instance, n e [ N - - m 2 / 1 6 ,  N - m / 4 ]  for m/2 even) are 
exponentially suppressed, and can therefore be dropped. Moreover,  for 
H = 0 the a ~ - a  symmetry implies that the contribution of  the terms with 
n near zero is equal to the one of  those with n near N. However, at H = 0 + 
only the first set is selected. Therefore, for H >  0 or H =  0 + the correct 
expansion is obtained by taking all the terms with n near zero. 

On the other hand, the series corresponding to the partition function 
tm (except for (2.3) are meaningless when N ~  o% as all the coefficients Z .... 

Z(mo.o = 1) diverge in that limit. This is not  true for the series (2.4a), (2.4b), 
whose coefficients have a well-defined limit 

" Different expansions are obtained when H--* oo and K remains bounded or when both K 
and H diverge with K/H-~ const. 
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E(kt, 2 ) =  ~ Em,,lu"'2"; E ... .  = lim E IN) (2.5a) 
�9 n~ ,  n 

N ~  oo 
m , n  

M(#, 2 ) =  ~ M "'2"" = ..... # , M ..... lim M (m (2.5b) , m,~/ 
N ~  oc, 

n l , n  

The limit coefficients {E ,  ..... Mm,,, } do not  depend on the bounda ry  condi-  
t ions of  the finite systems. It is therefore reasonable  to expect that  
{E ...... M ...... } are the coefficients of  the true infinite-volume series. '2 

The series expansions for the zero-field case ( H =  0 + or  2 = 1 - )  can be 
easily obta ined  from the previous ones by summing over the index n. F o r  
example,  M(/~) = ~ , , ,  Mmlz'", where M,,, = Z , ,  M ..... . 

In this paper  we are mainly concerned about  the computa t ion  of  
expectat ion values of more  compl ica ted  local observables  O. By local 
ope ra to r  we mean an opera to r  which only depends  on a finite number  of  
spins. Our  definitions of  the energy density and the magnet iza t ion  do 
satisfy this property .  The previous procedure  can be generalized to include 
also this case by adding  to the Hami l ton ian  (2.1) a new term p ropor t iona l  
to a t rans la t ion- invar iant  version of  the opera to r  O. 

However,  this me thod  is not  feasible for very compl ica ted  opera tors ,  
such as the ones considered in the next section. In this paper  we propose  
to use the definition 

1 
( O ) =  lim ~ O(a)  e - ~c'~' (2.6) 

N ~  ~176 ~ N  {o-= q-l} 

to overcome this problem. The term e x p ( - a f t )  can be expanded  in terms 
of  configurat ions with m unsatisfied bonds  and n flipped spins as we did in 
(2.3). In this case not  all the configurat ions with the same values of  m and 
n give the same cont r ibut ion  to the numera to r  of (2.6). This cont r ibut ion  
is equal to #")J' times the value of  the opera to r  O(a) at the configuration.  
Let us consider  a simple example. To compute  the magnet iza t ion  series one 
has to consider,  for instance, the opera to r  O = g(o.o) [ t rans la t ion  invariance 
assures that  the mean value of  this opera to r  will coincide with the 
magnet iza t ion  (2.5b)].  F o r  instance, the cont r ibu t ion  of  the one-flip con- 
figurations is different depending on whether  the flipped spin coincides or 

t2A nontrivial interchange of limits is involved here, but it can presumably be justified 
rigorously by standard mathematical physics techniques. We also need to be able to dif- 
ferentiate the free energy with respect to 2 at 2 = 1 -, and this might be problematic since 
the free energy is not analytic in H at H= 0. o4) However, this function is infinitely differen- 
tiable, so we expect that our results are correct, as we compute everything in the stable 
phase. These issues arise in all uses of the conventional low-T-expansion technology, not 
only our own. 
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not with a~o.0~. In the first case it is equal to -/242 and in the second one 
to +/242. The same occurs for more complicated configurations (and 
operators). For a finite volume we obtain in this way an expansion similar 
to (2.4a), (2.4b). The final result ( O ) = Z  ..... 0 ...... /2")J' is obtained after 
performing the thermodynamic limit. 

The main advantage of this method is that it allows the computation 
of low-T series for arbitrary operators. Its main drawback is that we need 
to compute two series for each observable, not one as in the former 
method. 

2.2. Renormalization Group Transformations 

Let us begin by considering RGT as a map from an (infinite-volume) 
Gibbs measure v to a renormalized measure v'. Later, the relationship 
between the measure v' and the renormalized Hamiltonian ~,'r will be dis- 
cussed. 

The first step is to define the renormalized spins. We divide the whole 
lattice into blocks (for simplicity we will assume here that these are 2 x 2 
blocks). To each block Bi we associate a new (renormalized) spin cry. The 
RGT is the rule which gives the {a'} configuration from the original one 
{a}. This rule could be either deterministic or stochastic, but in any case 
the renormalized spin should only depend on the spins belonging to the 
corresponding block (strict locality condition). Mathematically speaking 
we give a probability kernel T(a, da'). For each configuration of the 
original spins {a}, T(a, . )  is a probability distribution for the {a'} spins 
and furthermore it satisfies the property I T(a, da') = 1. We assume that T 
is strictly local in position space and that it maps translation-invariant 
measures into translation-invariant ones. 

The probability distribution v' of the image system is therefore given 
by 

= v T = f  dv(a) T(a, .) (2.7) v I 

and the expectation value of any local observable in this renormalized 
measure can be written as 

(2.8) 

Thus, the probability kernel T when acting (to the left) on the measure 
dr(a) yields a probability distribution on the new spins {a'} (i.e., a renor- 
malized measure v'). On the other hand, when T acts (to the right) on the 
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operator O(a') the result is a composite operator O(a)= (T. O)(a) which 
depends only on the original spins. The expectation value of any local 
operator in the renormalized measure is equal to the mean value of a cer- 
tain composite operator in the original measure. 

This discussion is general: the conclusions hold whether or not the 
systems can be described by a Hamiltonian ~ ~ ~ l .  Now we take into 
account the role of the Hamiltonians. Given an interaction ~vf ~ ~ l, we can 
construct a measure on the spin configuration space using the Gibbs 
prescription 

1 
dr(a) = dv~ ~ e - ~ )  (2.9) 

where dv~ is the apriori measure we assign to the space of configura- 
tions of a single spin (in our case it is just the counting measure which 
gives to each state a probability 1/2). For finite systems, formula (2.9) gives 
the correct answer; but for infinite systems one has to be more careful and 
consider the limit of the finite-volume measures with given boundary con- 
ditions as the system size tends to infinity. For finite systems the relation 
between Hamiltonians and measures is one-to-one. However, in the ther- 
modynamic limit this is not the case: one Hamiltonian can be associated to 
several measures (i.e., at first-order phase transitions), and conversely there 
are perfectly sound measures which cannot be constructed via the Gibbs 
prescription from any Hamiltonian ~ E ~.~1~) 

The Hamiltonian (2.1) obviously belongs to the set ~1, so we can con- 
struct the measure v using (2.9). Then the expectation value (2.8) of any 
local renormalized operator can be written as 

1 
( 0 )  , = ( 0 ) , =  lim - -  ~ O(a) e - ~ ' )  (2.10) 

N - - o o  Z N {~ffi •  

Here any given choice of boundary conditions gives rise to an original 
Gibbs measure v and a corresponding Gibbs measure v'. 

In Section2.1 we showed how to obtain low-T expansions for a 
general mean value ( O ) v .  Thus, the same procedure can be applied to 
(2.10), and series of the type ( O ) r  .... O ' . , , / t ' 2  n are obtained. The 
practical applicability of this method relies heavily on the actual form of 
the kernel T, as it is shown below. This procedure can also be easily 
generalized to several RG steps. 

It is important to remark that this method does not suffer from any 
of the pathologies which are exhibited by the RG when we try to define it 
as a map from a Hamiltonian space into a Hamiltonian space. Here we 
have not tried to define any renormalized interaction ~"/g' related with the 
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renormalized measure v' via the Gibbs  prescription (2.9). Our  results are 
independent of the Gibbsian or non-Gibbs ian  nature of  the renormalized 
measure. Let us illustrate this method  with three examples: 

E x a m p l e  1 .  D e c i m a t i o n .  This case is really simple because this 
t ransformation fixes one spin of  the block to be the renormalized one. In 
particular,  the (deterministic) kernel T takes the form 

T(a, a ' )= I - - [  6(a~, a2,) (2.11) 
i 

where the product  is over all sites i of  the renormalized system. 
We are only interested in comput ing observables that  are monomia ls  

of the spins (O = {~r(o,o ), a(o.o)Cr(l.o)} ). So it is enough to compute  for each 
R G T  the composi te  opera tor  ai. In this case this is equal to f f i= 

T(a, da')a~ =a2; .  This implies that  this case is trivial: the renormalized 
correlation functions are equal to the unrenormalized ones at twice the dis- 
tance. These functions can be obtained in the 2D Ising model  from the 
exact solution. ~5" ~6) 

Example 2. Kadanoff Transformation. This is given by the 
following (stochastic) probabil i ty kernel: 

]'-1 exp(pa~ ~'.j~ s, aj) (2.12) 
T(a, a ' )  = *i 1 2 cosh(p  ~ j ~ s ,  aj) 

where p is a free real parameter .  Then, #~=tanh(p~k,s,  ak). The first 
terms can be computed  by hand: 

M ' (p ,  1 - ) = tanh 4p - 4( tanh 4p - tanh 2p)/.14 

- 4 ( 3  tanh 4p - 2  tanh 2 p ) p  6 

- (36 tanh 4p - 4  tanh 2p)/z s + d~(/z 1~ (2.13a) 

E'(/z, 1 ) = tanh 2 4p - 8(tanh 2 4p - tanh 4p tanh 2p)/A 4 

- 2( 11 tanh 2 4p - 6 tanh 2p tanh 4p - tanh 2 2p)/~6 

- (43 tanh 2 4p + 40 tanh 2p tanh 4p - 20 tanh 2 2p)/z 8 

+ d~(/z I~ (2.13b) 

The limit p --+ 0 corresponds to the case in which the a '  are not  correlated 
with the original spins and thus the renormalized spins do not interact 
among  them. For  this reason both  quantities are zero. The limit p ~ oo 
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corresponds to the majority rule with equally probable tie breaker. This 
case wilI be treated in the next section. 

Example 3. Major i ty  Rule. In this case 

T(a ' , a )=yI~ (a~- s ignQZsa j )  ) (2.14) 

When s i g n ( . ) = 0  we choose a ' =  - I  or + 1 with probabilities q~ [0, 1] 
and l - q ,  respectively. The composite operator fi takes the form 
t~;= sign(~k~Sj ak). The first terms for general q are 

M'(12, 1 - ) =  1 -8q126-(lO+44q)pS+(9(12 ~~ (2.15a) 

E'(12, 1 )=  1 - 16q126-(20+88q--4q2)ps+(~(p ~~ (2.15b) 

The result with q = 1/2 was first reported in ref. 11. Notice that the 0(12 4) 
term vanishes. This is due to the fact that one-spin excitations cannot 
produce any flipped renormalized spin a ' =  - 1 .  

3. STUDY OF THE FIRST-ORDER PHASE TRANSIT ION AT 
VERY LOW TEMPERATURES 

In MCRG calculations one chooses in advance a linear subspace 
V,, c ~  ~ of the space of local Hamiltonians. Then, given certain renor- 
malized expectation values, one tries to find a renormalized Hamiltonian 
~'ff', ~ V,, in such a way that a measure constructed from Jff',, is similar in 
some sense to the true renormalized measure v'. Most "reconstruction" 
methods are based on Schwinger-Dyson equations/~7-19~ The idea is sim- 
ple: minimize a certain functional (which depends on the method) involv- 
ing both renormalized expectation values (the input) and renormalized 
couplings (the output). It can be shown tl9~ that these methods provide a 
unique solution ~',,, which coincides with the true one ~ '  if this latter 
interaction belongs to the trial subspace V,,. The key property of these 
functionals is that they are strictly convex. 

Here we will consider the procedure given in ref. 11, Section 5.1.2. It is 
based on the minimization of the relative entropy density with respect to 
the true renormalized measure v'. This functional in also strictly convex 
and thus the solution is unique in each V,, if it exists. Van Enter et al. 
showed that the solution ~ ,  should satisfy the following conditions: 

( 0 , )  ~, = ( 0 ; )  v; VO, e V,, (3.1) 
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where v',, is some Gibbs measure constructed from the Hamiltonian J : ' , .  In 
this case we have the same number  of  equations as the number  of  unknown 
parameters. Note that 9r might have multiple Gibbs measures; it is 
required that one of them satisfy (3.1). 

First-order phase transitions are characterized by the coexistence of  
several pure phases. Given one RGT, each pure phase v Ik~ is mapped to a 
renormalized measure v '~k). Given a subspace V , , ~  1, we can solve 
Eq. (3.1) for each renormalized measure v 'tk~ and obtain a corresponding 
truncated renormalized Hamiltonian y:~k~. All these truncated 
Hamiltonians are uniquely defined and the important  question is whether 
they are all equal or not. 

In the 2D Ising case, there are only two pure phases v ~ § ~ coexisting at 
T <  T c and H =  0, and they are related by the a ~ - a  symmetry. For  this 
reason, the even couplings in the truncated Hamiltonians ~,t---) are equal, 
and the odd couplings differ by a sign (in particular, the renormalized 
magnetic field in one phase is minus the renormalized magnetic field in the 
other one). Therefore, the truncated RG map is continuous and single 
valued if and only if the renormalized Hamiltonians do not contain any 
odd interaction. Due to this symmetry,  we only have to consider one phase 
[i.e., the ( + 1 )  phase of Section 2 13]. To check if the truncated 
Hamiltonian J(:',, has any odd term we simply solve (3.1) restricted to the 
even-coupling subspace of  V,.  If  such a solution exists, then 
9r + I = ~o]t - i; if no such solution exists, then y ~ l  + ) ~ ~:~t - ). 

Case I. V 2 = { H , K }  

In this case 14 our subspace consists precisely of  the Hamiltonians (2.1). 
We will try to match both the energy density and the zero-field magnetiza- 
tion by using a zero-field Hamiltonian at a different (lower) temperature. 
If this matching can be performed, it would mean that the truncated RGT 
for the subspace V2 is continuous at the transition line. 

Let us consider first the majority-rule map with random tie breaker. 
We define K'  as the nearest neighbor coupling such that 

E' (K ,  O) = E(K ' ,  0) (3.2) 

~3 To simplify the notation all the superscripts ( + ) will be dropped hereafter. 
~4 One might consider ~8~ the even simpler case V~ = {H}. But this case is trivial since any 

RGT satisfying M(K, 0 +)~ M'(K, 0 +) is necessarily discontinuous at H = 0 when restricted 
to the affine subspace A ~ = V~ + (0, K) with fixed K,> Kc. 
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using the result (2.15b) and the well-known expansion of the Onsager 
solution 

E(/2, 1 ) = 1 -- 4/24 - -  12 /2  6 - -  36/28 + (.9(/210) (3.3a) 

M(p, 1 - ) = 1 - 2/24 - 8/26 - 34/28 + (9(/210) (3.3b) 

we find that 

p, = x//~/23 63 5 +~---~/2 +(9(p 6) (3.4) 

The zero-field magnetization M at this particular temperature is equal to 

M(/2', 1 - )  = 1 - - 4 / . / 6  __~/28 -t- (-9(/2 9 )  (3.5) 

and this expansion should be compared with the renormalized magnetiza- 
tion M'(/2, 2) given in (2.15a). We find that 

M(/2', 1 - ) >  M'(/2, 1 - )  (3.6) 

This equation means that we can account for the observed renormalized 
magnetization M'(/2, 1- )  with a system at zero field and K ' =  
- ( I / 2 )  log/2' g 3 K -  (1/4) log 2. This system is not in a pure phase, but in 
a mixed phase because the renormalized magnetization M'(/2, 1- )  lies 
strictly between -t-M(~2', 1-).  Thus, Eq. (3.1) is satisfied by a measure v~ 
which is a convex combination of the two pure phases v%~ > characterizing 
the 2D Ising model at inverse temperature K' and field H ' = 0  -+ [i.e., 
v~_=0cv~+~+(1-~) v~- ) for a suitable ~e(0 ,  1)]. 

The same game can be played with the other two RGTs considered in 
Section 2. The easiest case is the decimation transformation, where conclu- 
sions can be drawn for every K >  K c. In the 2D Ising model it is well 
known that (a~o,o)a~t,o~)>(a~o,o~a~2.o~) for 0 < K < ~ .  This implies 
immediately that E'(K, O) < E(K, 0), and hence that K' < K if we take into 
account that E(K, 0) is a strictly increasing function of K. On the other 
hand, the renormalized magnetization coincides with the unrenormalized 
one (i.e., the RG flow follows the lines of constant magnetization). And 
M(K, 0 + ) is also a strictly increasing function of K for K >  K,.. Combining 
both pieces we obtain that M(K',O+)<M'(K,O +) for all K>Kc. This 
inequality is opposite to (3.6), because the direction of the RG flow is also 
opposite that of the majority-rule flow: it goes from low temperature to 
high temperature (K' <K).  So, we have to increase the magnetic field to 
keep the magnetization constant, unless the magnetization at the starting 
point is zero. The latter condition only holds above the critical tem- 
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perature. In summary, for any K >  Kc we cannot match the renormalized 
observables using a zero-field Hamiltonian. 

For the Kadanoff transformation and large (but finite) p the same 
result holds: one cannot match the energy densities and the magnetizations 
with a zero-field nearest neighbor interaction. This can only be proved 
when p is large enough. The reason is clear: the leading term of E '  is 
tanh 24p and i f p  is not large, then the solution of (3.2) does not satisfy 
p '  ,~ 1 and the low-T series for p '  are then meaningless. 

For finite p we can always choose/,t o such that for/z <Po the leading 
term of E'(p,  1 ) is dominated by a term which does not depend on p. Then 

E'(p, 1)=  1 --4e-SP + O(e -'6p) (3.7) 

if we choose Po ~ e x p ( - 3 p ) .  The solution of Eq. (3.2) is then 

p' = e-2p _ ~ e-6p + 0 ( e -  lop) (3.8) 

and 

M(p', 1 - )  = 1 -- 2e-SP-- 3e-12P + (9(e -16p) (3.9) 

which should be compared with the expansion of the renormalized 
magnetization for p very large and/z <Po:  

M'(p ,  I - ) =  1 - 2e-SP + dg(e -16p) (3.10) 

We find that the leading term of both quantities is the same, but the next- 
to-leading term is different. In particular we find that M'(p ,  1 - ) >  
M(p', 1- ) ,  so we cannot match both E '  and M '  with a zero-field Ising 
interaction. This discussion is valid as long as p is large but finite. When 
p diverges the leading term of 1 - E ' ( p ,  1) is proportional to p6 and we 
reobtain the result for the majority rule transformation with q = 1/2. 

Case II. I/3=.{H, K, L} 

Now we consider a Hamiltonian with an additional diagonal next to 
nearest neighbor term L ~ a~ak. First of all we have to compute the renor- 
malized mean value of the next to nearest neighbor correlation function. 
The result for the majority rule with random tie breaker is 

F'(p, 1) = <#to, oV~tl,l~> = 1 -- 4/16-- 64/t8-- 336p I ~  1578pl2 + (9(p 14) (3.11) 
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We also need the functions H '  and E '  to the same order in/2. The result 
is is 

M'(/2, 1 - ) =  1 - - 4 / 2 6 - - 3 2 / 2 8 -  168/210-- 816/212 + (9(/214) (3.12a) 

E'(/2, t ) = 1  -8/x6--63/2g--312/21~ (3.12b) 

The second step is to write down the expressions for ( O i ) , . ,  u r V3. The 
result for zero magnetic field is 

E(/2, ),, 1 )=  1 -4/24), 4 -  12/26), 8 -  24/282 i 2 -  32/282'~ + 36/2828 

--40/210216 + (9(/2826) (3.13a) 

F(/2, ),, 1 )=  1 --4/24), " -  16/26), s -  36/282 '2 -40/2821~ + 36/2828 

- 64/21~ + (9(/2826) (3.13b) 

M(/2, ~,, 1 - ) = 1 -- 2/24), 4 -- 8/26), 8 - 20/28212 _ 24/282,0 + 18/2828 

__40/210216 + (9(/28)].6) (3.13c) 

where ), = e x p ( - 2 L ) .  Now we have to find a pair (/2',),') such that 

E( /2 ' , / ,  1) = E'(/2, 1); F(/2', ),', 1 ) = F'(/2, 1 ) (3.14) 

The solution to leading order is /2'=4/22+(9(/24) and ),'=11(32/2') ~/4 
(1+(9(/2')).  This implies that K ' ~ 2 K - l o g 2 > 0  and L' ~ (5/8) log 2 - -  
K'/4.~(7/8)log2--K/2<O. So, as K--.  oo, K'  and - L '  also diverge. The 
latter relation between/2'  and ),' should be taken into account when com- 
puting the actual order of  a given term in the expansion of the parti t ion 
function Z~r ),', 1 - )  and its derivatives. In our case, this implies that the 
first two excitations to the ground state are of order/2,3 and/2,4, respec- 
tively. We have considered here all the excitations up to order (9(/2,6). 

A straightforward computat ion leads to the next-to-leading terms 

69 ~ 17,027 4 (9(/25)1 (3.15a) /2' =4/2211---fg /2- + x/~ /23 +--~i~- /2 + 

_ (  1 .~1/4 327 , 3 ,3- 144,177 ,, , s ,  q 
E 1 _ -+  -,-/j (3.15b) 

is We have computed these expansions by using a computer algorithm based on the recursive 
counting method of ref. 20. Further details can be obtained from the author. 
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The magnetization (3.13c) computed at the latter solution is equal to 

8 2689 io 
M(,u',y', 1 - ) = 1 - - 4 / a 4 - 3 2 / a  ---~-ff-/.t +(.0(/.t~')<M'(/.t, 1 - )  (3.16) 

This implies that we cannot match the renormalized expectation values 
with a zero-field interaction belonging to V3. 

4. CONCLUSIONS 

In this paper we have shown how to compute low-temperature expan- 
sions for the expectation values of local operators computed in the renor- 
malized measure. In particular we have analyzed three RGTs: decimation, 
Kadanoff transformation with large but finite parameter p, and majority 
rule with random tie breaker. All of them are defined on 2 x 2 blocks. We 
have been able to compute the first terms of the series corresponding to the 
renormalized magnetization and nearest neighbor two-point correlation 
function for all these transformations. 

The main goal of this paper was the analysis of the truncation issue on 
the Ising model. The unrenormalized system is located at the Ising first- 
order transition line at very low temperature ( H =  O, K~> K,.). For the three 
transformation considered we have found that we need a magnetic field 
to solve the matching equations (3.1) when we restrict the truncated 
Hamiltonian to belong to a certain finite-dimensional subspace of N~. In 
particular, for the decimation and Kadanoff transformations this matching 
cannot be performed when restricting the equations to V2. For majority 
rule, in this case the equations admit a zero-field solution, but when we 
consider the (larger) subspace V 3 we also need a magnetic field. 

So it seems that truncation in the renormalized Hamiltonian induces 
some spurious odd operators (we have only found nonzero magnetic fields, 
but there is no reason why more complicated odd operators should not 
appear for larger subspaces V,,). So these RGTs are discontinuous at the 
Ising transition line when restricted to some finite-dimensional subspace of 
the interaction space ~ .  

However, these results do not clarify the interplay between truncation 
and non-Gibbsianness. It is known ~j) that the decimation and Kadanoff 
transformations "lead to non-Gibbsian renormalized measures when we 
start at low enough temperature; and in these cases we have shown that the 
truncated RGT are discontinuous. For the majority rule the situation is 
less clear, as the nature of the renormalized measure is not known. The 
authors of ref. 11 conjectured that in this case the renormalized measure is 
also non-Gibbsian, but they were able to prove it only for certain special 
block sizes (7 x 7, 41 x 41,...). In any case, this model leads to a continuous 
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truncated RGT for the subspace V2, but a discontinuous one for V 3. It is 
an open question what happens tbr larger subspaces V,,. 

It would be very interesting to find a transformation which leads to a 
Gibbsian measure at low temperatures. In this case we could isolate the 
effect of truncation from non-Gibbsianness. A systematic study of the 
behavior of the estimates Jr is also an interesting problem, which deserves 
more attention in the future. 
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